Sentiment Analysis

What is Sentiment Analysis?
Positive or negative movie review?

- unbelievably disappointing
- Full of zany characters and richly applied satire, and some great plot twists
- this is the greatest screwball comedy ever filmed
- It was pathetic. The worst part about it was the boxing scenes.
Google Product Search

HP Officejet 6500A Plus e-All-in-One Color Ink-jet - Fax / copier / printer / scanner

$89 **online**, $100 **nearby** ★★★★★ **377 reviews**
September 2010 - Printer - HP - Inkjet - Office - Copier - Color - Scanner - Fax - 250 sheet

Reviews

Summary - Based on 377 reviews

<table>
<thead>
<tr>
<th>1 star</th>
<th>2</th>
<th>3</th>
<th>4 stars</th>
<th>5 stars</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

What people are saying

- ease of use: "This was very easy to setup to four computers."
- value: "Appreciate good quality at a fair price."
- setup: "Overall pretty easy setup."
- customer service: "I DO like honest tech support people."
- size: "Pretty Paper weight."
- mode: "Photos were fair on the high quality mode."
- colors: "Full color prints came out with great quality."
Bing Shopping

HP Officejet 6500A E710N Multifunction Printer

Product summary Find best price Customer reviews Specifications Related items

$121.53 - $242.39 (14 stores)

Average rating ★★★★★ (144) Most mentioned

★ ★ ★ ★ ★ (55) Performance (57)
★ ★ ★ ★ ★ (54) Ease of Use (43)
★ ★ ★ ★ ★ (10) Print Speed (39)
★ ★ ★ ★ ★ (6) Connectivity (31)
★ ★ ★ ★ (23) More▼
★ ★ ★ ★ (0)

Show reviews by source

Best Buy (140)
CNET (5)
Amazon.com (3)
Twitter sentiment versus Gallup Poll of Consumer Confidence

window = 15, r = 0.804

Sept. 15, 2008: Lehman collapse, AIG bailout
Feb 2009: Stock market bottoms out, begins recovery
Twitter sentiment:

Bollen et al. (2011)

- CALM predicts DJIA 3 days later
- At least one current hedge fund uses this algorithm
Target Sentiment on Twitter

- **Twitter Sentiment App**
- Alec Go, Richa Bhayani, Lei Huang. 2009. Twitter Sentiment Classification using Distant Supervision
Sentiment analysis has many other names

- Opinion extraction
- Opinion mining
- Sentiment mining
- Subjectivity analysis
Why sentiment analysis?

- **Movie**: is this review positive or negative?
- **Products**: what do people think about the new iPhone?
- **Public sentiment**: how is consumer confidence? Is despair increasing?
- **Politics**: what do people think about this candidate or issue?
- **Prediction**: predict election outcomes or market trends from sentiment
Scherer Typology of Affective States

- **Emotion**: brief organically synchronized ... evaluation of a major event
 - angry, sad, joyful, fearful, ashamed, proud, elated
- **Mood**: diffuse non-caused low-intensity long-duration change in subjective feeling
 - cheerful, gloomy, irritable, listless, depressed, buoyant
- **Interpersonal stances**: affective stance toward another person in a specific interaction
 - friendly, flirtatious, distant, cold, warm, supportive, contemptuous
- **Attitudes**: enduring, affectively colored beliefs, dispositions towards objects or persons
 - liking, loving, hating, valuing, desiring
- **Personality traits**: stable personality dispositions and typical behavior tendencies
 - nervous, anxious, reckless, morose, hostile, jealous
Scherer Typology of Affective States

- **Emotion**: brief organically synchronized ... evaluation of a major event
 - *angry, sad, joyful, fearful, ashamed, proud, elated*
- **Mood**: diffuse non-caused low-intensity long-duration change in subjective feeling
 - *cheerful, gloomy, irritable, listless, depressed, buoyant*
- **Interpersonal stances**: affective stance toward another person in a specific interaction
 - *friendly, flirtatious, distant, cold, warm, supportive, contemptuous*
- **Attitudes**: enduring, affectively colored beliefs, dispositions towards objects or persons
 - *liking, loving, hating, valuing, desiring*
- **Personality traits**: stable personality dispositions and typical behavior tendencies
 - *nervous, anxious, reckless, morose, hostile, jealous*
Sentiment Analysis

• Sentiment analysis is the detection of **attitudes**
 “enduring, affectively colored beliefs, dispositions towards objects or persons”

 1. **Holder (source)** of attitude
 2. **Target (aspect)** of attitude
 3. **Type** of attitude
 • From a set of types
 • *Like, love, hate, value, desire,* etc.
 • Or (more commonly) simple weighted **polarity:**
 • *positive, negative, neutral,* together with **strength**

 4. **Text** containing the attitude
 • Sentence or entire document
Sentiment Analysis

• Simplest task:
 • Is the attitude of this text positive or negative?

• More complex:
 • Rank the attitude of this text from 1 to 5

• Advanced:
 • Detect the target, source, or complex attitude types
Sentiment Analysis

• Simplest task:
 • Is the attitude of this text positive or negative?

• More complex:
 • Rank the attitude of this text from 1 to 5

• Advanced:
 • Detect the target, source, or complex attitude types
Sentiment Analysis

What is Sentiment Analysis?
Sentiment Analysis

A Baseline Algorithm
Sentiment Classification in Movie Reviews

- Polarity detection:
 - Is an IMDB movie review positive or negative?
- Data: Polarity Data 2.0:
 - http://www.cs.cornell.edu/people/pabo/movie-review-data
when _star wars_ came out some twenty years ago, the image of traveling throughout the stars has become a commonplace image. [...] when han solo goes light speed, the stars change to bright lines, going towards the viewer in lines that converge at an invisible point. cool.

october sky offers a much simpler image—that of a single white dot, traveling horizontally across the night sky. [. . .]

“snake eyes” is the most aggravating kind of movie: the kind that shows so much potential then becomes unbelievably disappointing. it’s not just because this is a brian depalma film, and since he’s a great director and one who’s films are always greeted with at least some fanfare. and it’s not even because this was a film starring nicolas cage and since he gives a brauvara performance, this film is hardly worth his talents.
Baseline Algorithm (adapted from Pang and Lee)

- Tokenization
- Feature Extraction
- Classification using different classifiers
 - Naïve Bayes
 - MaxEnt
 - SVM
Sentiment Tokenization Issues

- Deal with HTML and XML markup
- Twitter mark-up (names, hash tags)
- Capitalization (preserve for words in all caps)
- Phone numbers, dates
- Emoticons
- Useful code:
 - Christopher Potts sentiment tokenizer
 - Brendan O’Connor twitter tokenizer
Extracting Features for Sentiment Classification

- How to handle negation
 - I *didn’t* like this movie
 - vs
 - I *really* like this movie

- Which words to use?
 - Only adjectives
 - All words
 - All words turns out to work better, at least on this data
Negation

Add NOT_ to every word between negation and following punctuation:

didn’t like this movie , but I

didn’t NOT_like NOT_this NOT_movie but I

Reminder: Naïve Bayes

$$c_{NB} = \arg\max_{c_j \in C} P(c_j) \prod_{i \in \text{positions}} P(w_i \mid c_j)$$

$$\hat{P}(w \mid c) = \frac{\text{count}(w, c) + 1}{\text{count}(c) + |V|}$$
Binarized (Boolean feature) Multinomial Naïve Bayes

• Intuition:
 • For sentiment (and probably for other text classification domains)
 • Word occurrence may matter more than word frequency
 • The occurrence of the word *fantastic* tells us a lot
 • The fact that it occurs 5 times may not tell us much more.
 • Boolean Multinomial Naïve Bayes
 • Clips all the word counts in each document at 1
From training corpus, extract *Vocabulary*

Calculate $P(c_j)$ terms
- For each c_j in C do

 $docs_j \leftarrow$ all docs with class $= c_j$

 $P(c_j) \leftarrow \frac{|docs_j|}{|\text{total # documents}|}$

Calculate $P(w_k \mid c_j)$ terms
- Remove duplicates in each $docs_j$
- For each word type w in $docs_j$
 - Retain only a single instance of w

$P(w_k \mid c_j) \leftarrow \frac{n_k + \alpha}{n + \alpha \mid \text{Vocabulary} \mid}$
Boolean Multinomial Naïve Bayes on a test document d

- First remove all duplicate words from d
- Then compute NB using the same equation:

$$c_{NB} = \arg\max_{c_j \in C} P(c_j) \prod_{i \in \text{positions}} P(w_i \mid c_j)$$
Normal vs. Boolean Multinomial NB

<table>
<thead>
<tr>
<th>Normal</th>
<th>Doc</th>
<th>Words</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>1</td>
<td>Chinese Beijing Chinese</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Chinese Chinese Shanghai</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Chinese Macao</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Tokyo Japan Chinese</td>
<td>j</td>
</tr>
<tr>
<td>Test</td>
<td>5</td>
<td>Chinese Chinese Chinese Tokyo Japan</td>
<td>?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Boolean</th>
<th>Doc</th>
<th>Words</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training</td>
<td>1</td>
<td>Chinese Beijing</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Chinese Shanghai</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Chinese Macao</td>
<td>c</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Tokyo Japan Chinese</td>
<td>j</td>
</tr>
<tr>
<td>Test</td>
<td>5</td>
<td>Chinese Tokyo Japan</td>
<td>?</td>
</tr>
</tbody>
</table>
Binarized (Boolean feature)
Multinomial Naïve Bayes

- Binary seems to work better than full word counts
 - This is not the same as Multivariate Bernoulli Naïve Bayes
 - MBNB doesn’t work well for sentiment or other text tasks
 - Other possibility: log(freq(w))

V. Metsis, I. Androutsopoulos, G. Paliouras. 2006. Spam Filtering with Naïve Bayes – Which Naïve Bayes?
CEAS 2006 - Third Conference on Email and Anti-Spam.
Cross-Validation

- **Break up data into 10 folds**
 - (Equal positive and negative inside each fold?)

- **For each fold**
 - Choose the fold as a temporary test set
 - Train on 9 folds, compute performance on the test fold

- **Report average performance of the 10 runs**
Other issues in Classification

- MaxEnt and SVM tend to do better than Naïve Bayes
Problems:
What makes reviews hard to classify?

- Subtlety:
 - Perfume review in *Perfumes: the Guide*:
 - “If you are reading this because it is your darling fragrance, please wear it at home exclusively, and tape the windows shut.”
 - Dorothy Parker on Katherine Hepburn
 - “She runs the gamut of emotions from A to B”
“This film should be brilliant. It sounds like a great plot, the actors are first grade, and the supporting cast is good as well, and Stallone is attempting to deliver a good performance. However, it can’t hold up.”

Well as usual Keanu Reeves is nothing special, but surprisingly, the very talented Laurence Fishbourne is not so good either, I was surprised.
Sentiment Analysis

A Baseline Algorithm
Sentiment Analysis

Sentiment Lexicons
The General Inquirer

- Home page: http://www.wjh.harvard.edu/~inquirer
- List of Categories: http://www.wjh.harvard.edu/~inquirer/homecat.htm
- Spreadsheet: http://www.wjh.harvard.edu/~inquirer/inquirerbasic.xls
- Categories:
 - Positiv (1915 words) and Negativ (2291 words)
 - Strong vs Weak, Active vs Passive, Overstated versus Understated
 - Pleasure, Pain, Virtue, Vice, Motivation, Cognitive Orientation, etc
- Free for Research Use
LIWC (Linguistic Inquiry and Word Count)

- Home page: http://www.liwc.net/
- 2300 words, >70 classes
- **Affective Processes**
 - negative emotion (*bad, weird, hate, problem, tough*)
 - positive emotion (*love, nice, sweet*)
- **Cognitive Processes**
 - Tentative (*maybe, perhaps, guess*), Inhibition (*block, constraint*)
- **Pronouns, Negation** (*no, never*), **Quantifiers** (*few, many*)
- $30 or $90 fee
MPQA Subjectivity Cues Lexicon

- 6885 words from 8221 lemmas
 - 2718 positive
 - 4912 negative
- Each word annotated for intensity (strong, weak)
- GNU GPL
Bing Liu Opinion Lexicon

- Bing Liu's Page on Opinion Mining
- http://www.cs.uic.edu/~liub/FBS/opinion-lexicon-English.rar

- 6786 words
 - 2006 positive
 - 4783 negative
SentiWordNet

- Home page: http://sentiwordnet.isti.cnr.it/
- All WordNet synsets automatically annotated for degrees of positivity, negativity, and neutrality/objectiveness
- [estimable(J,3)] “may be computed or estimated”
 - Pos 0 Neg 0 Obj 1
- [estimable(J,1)] “deserving of respect or high regard”
 - Pos .75 Neg 0 Obj .25
Disagreements between polarity lexicons

Christopher Potts, [Sentiment Tutorial](#), 2011

<table>
<thead>
<tr>
<th></th>
<th>Opinion Lexicon</th>
<th>General Inquirer</th>
<th>SentiWordNet</th>
<th>LIWC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MPQA</td>
<td>33/5402 (0.6%)</td>
<td>49/2867 (2%)</td>
<td>1127/4214 (27%)</td>
<td>12/363 (3%)</td>
</tr>
<tr>
<td>Opinion Lexicon</td>
<td>32/2411 (1%)</td>
<td></td>
<td>1004/3994 (25%)</td>
<td>9/403 (2%)</td>
</tr>
<tr>
<td>General Inquirer</td>
<td></td>
<td></td>
<td>520/2306 (23%)</td>
<td></td>
</tr>
<tr>
<td>SentiWordNet</td>
<td></td>
<td></td>
<td></td>
<td>174/694 (25%)</td>
</tr>
<tr>
<td>LIWC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Analyzing the polarity of each word in IMDB

• How likely is each word to appear in each sentiment class?
• Count(“bad”) in 1-star, 2-star, 3-star, etc.
• But can’t use raw counts:
• Instead, **likelihood:**
 \[P(w | c) = \frac{f(w, c)}{\sum_{w \in c} f(w, c)} \]
• Make them comparable between words
 • Scaled likelihood:
 \[\frac{P(w | c)}{P(w)} \]
Analyzing the polarity of each word in IMDB

Other sentiment feature: Logical negation

• Is logical negation (*no, not*) associated with negative sentiment?

• Potts experiment:
 • Count negation (*not, n’t, no, never*) in online reviews
 • Regress against the review rating
Potts 2011 Results: More negation in negative sentiment

IMDB (4,073,228 tokens)

Five-star reviews (846,444 tokens)
Sentiment Analysis

Sentiment Lexicons
Sentiment Analysis

Learning Sentiment Lexicons
Semi-supervised learning of lexicons

- Use a small amount of information
 - A few labeled examples
 - A few hand-built patterns
- To bootstrap a lexicon
Hatzivassiloglou and McKeown intuition for identifying word polarity

- Adjectives conjoined by “and” have same polarity
 - Fair and legitimate, corrupt and brutal
 - *fair and brutal, *corrupt and legitimate
- Adjectives conjoined by “but” do not
 - fair but brutal
Step 1

- Label **seed set** of 1336 adjectives (all >20 in 21 million word WSJ corpus)
 - 657 positive
 - adequate, central, clever, famous, intelligent, remarkable, reputed, sensitive, slender, thriving...
 - 679 negative
 - contagious, drunken, ignorant, lanky, listless, primitive, strident, troublesome, unresolved, unsuspecting...
Hatzivassiloglou & McKeown 1997

Step 2

- Expand seed set to conjoined adjectives

Google "was nice and"

Nice location in Porto and the front desk staff was nice and helpful...
www.tripadvisor.com/ShowUserReviews-g189180-d206904-r12068...
Mercure Porto Centro: Nice location in Porto and the front desk staff was nice and helpful - See traveler reviews, 77 candid photos, and great deals for Porto, ...

If a girl was nice and classy, but had some vibrant purple dye in ...
answers.yahoo.com › Home › All Categories › Beauty & Style › Hair
4 answers - Sep 21
Question: Your personal opinion or what you think other people’s opinions might ...
Top answer: I think she would be cool and confident like katy perry :)
Hatzivassiloglou & McKeown 1997

Step 3

- Supervised classifier assigns “polarity similarity” to each word pair, resulting in graph:
Hatzivassiloglou & McKeown 1997

Step 4

- Clustering for partitioning the graph into two

+ helpful

- brutal
corrupt
irrational

nice
fair
classy
Output polarity lexicon

• Positive
 • bold decisive disturbing generous good honest important large mature patient peaceful positive proud sound stimulating straightforward strange talented vigorous witty...

• Negative
 • ambiguous cautious cynical evasive harmful hypocritical inefficient insecure irrational irresponsible minor outspoken pleasant reckless risky selfish tedious unsupported vulnerable wasteful...
Output polarity lexicon

• Positive
 • bold decisive **disturbing** generous good honest important large mature patient peaceful positive proud sound stimulating straightforward **strange** talented vigorous witty...

• Negative
 • ambiguous **cautious** cynical evasive harmful hypocritical inefficient insecure irrational irresponsible minor **outspoken pleasant** reckless risky selfish tedious unsupported vulnerable wasteful...
Turney Algorithm

1. Extract a *phrasal lexicon* from reviews
2. Learn polarity of each phrase
3. Rate a review by the average polarity of its phrases
Extract two-word phrases with adjectives

<table>
<thead>
<tr>
<th>First Word</th>
<th>Second Word</th>
<th>Third Word (not extracted)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JJ</td>
<td>NN or NNS</td>
<td>anything</td>
</tr>
<tr>
<td>RB, RBR, RBS</td>
<td>JJ</td>
<td>Not NN nor NNS</td>
</tr>
<tr>
<td>JJ</td>
<td>JJ</td>
<td>Not NN or NNS</td>
</tr>
<tr>
<td>NN or NNS</td>
<td>JJ</td>
<td>Nor NN nor NNS</td>
</tr>
<tr>
<td>RB, RBR, or RBS</td>
<td>VB, VBD, VBN, VBG</td>
<td>anything</td>
</tr>
</tbody>
</table>
How to measure polarity of a phrase?

- Positive phrases co-occur more with “excellent”
- Negative phrases co-occur more with “poor”
- But how to measure co-occurrence?
Pointwise Mutual Information

- **Mutual information** between 2 random variables X and Y

$$ I(X,Y) = \sum_x \sum_y P(x,y) \log_2 \frac{P(x,y)}{P(x)P(y)} $$

- **Pointwise mutual information:**
 - How much more do events x and y co-occur than if they were independent?

$$ PMI(X,Y) = \log_2 \frac{P(x,y)}{P(x)P(y)} $$
Pointwise Mutual Information

- **Pointwise mutual information:**
 - How much more do events x and y co-occur than if they were independent?

 $$\text{PMI}(X,Y) = \log_2 \frac{P(x,y)}{P(x)P(y)}$$

- **PMI between two words:**
 - How much more do two words co-occur than if they were independent?

 $$\text{PMI}(\text{word}_1, \text{word}_2) = \log_2 \frac{P(\text{word}_1, \text{word}_2)}{P(\text{word}_1)P(\text{word}_2)}$$
How to Estimate Pointwise Mutual Information

- Query search engine (Altavista)
 - \(P(\text{word}) \) estimated by \(\frac{\text{hits(\text{word})}}{N} \)
 - \(P(\text{word}_1, \text{word}_2) \) by \(\frac{\text{hits(\text{word}_1 \ \text{NEAR} \ \text{word}_2})}{N^2} \)

\[
\text{PMI}(\text{word}_1, \text{word}_2) = \log_2 \frac{\text{hits(\text{word}_1 \ \text{NEAR} \ \text{word}_2})}{\text{hits(\text{word}_1)}\text{hits(\text{word}_2)}}
\]
Does phrase appear more with “poor” or “excellent”?

\[
\text{Polarity}(\text{phrase}) = \text{PMI}(\text{phrase,} \text{"excellent"}) - \text{PMI}(\text{phrase,} \text{"poor"})
\]

\[
= \log_2 \frac{\text{hits(phrase NEAR "excellent")}}{\text{hits(phrase)hits("excellent")}} - \log_2 \frac{\text{hits(phrase NEAR "poor")}}{\text{hits(phrase)hits("poor")}}
\]

\[
= \log_2 \frac{\text{hits(phrase NEAR "excellent")}}{\text{hits(phrase)hits("excellent")}} \frac{\text{hits(phrase)hits("poor")}}{\text{hits(phrase NEAR "poor")}}
\]

\[
= \log_2 \left(\frac{\text{hits(phrase NEAR "excellent")} \text{hits("poor")}}{\text{hits(phrase NEAR "poor")} \text{hits("excellent")}} \right)
\]
Phrases from a thumbs-up review

<table>
<thead>
<tr>
<th>Phrase</th>
<th>POS tags</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>online service</td>
<td>JJ NN</td>
<td>2.8</td>
</tr>
<tr>
<td>online experience</td>
<td>JJ NN</td>
<td>2.3</td>
</tr>
<tr>
<td>direct deposit</td>
<td>JJ NN</td>
<td>1.3</td>
</tr>
<tr>
<td>local branch</td>
<td>JJ NN</td>
<td>0.42</td>
</tr>
<tr>
<td>low fees</td>
<td>JJ NNS</td>
<td>0.33</td>
</tr>
<tr>
<td>true service</td>
<td>JJ NN</td>
<td>-0.73</td>
</tr>
<tr>
<td>other bank</td>
<td>JJ NN</td>
<td>-0.85</td>
</tr>
<tr>
<td>inconvenienly located</td>
<td>JJ NN</td>
<td>-1.5</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>0.32</td>
</tr>
</tbody>
</table>
Phrases from a thumbs-down review

<table>
<thead>
<tr>
<th>Phrase</th>
<th>POS tags</th>
<th>Polarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>direct deposits</td>
<td>JJ NNS</td>
<td>5.8</td>
</tr>
<tr>
<td>online web</td>
<td>JJ NN</td>
<td>1.9</td>
</tr>
<tr>
<td>very handy</td>
<td>RB JJ</td>
<td>1.4</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>virtual monopoly</td>
<td>JJ NN</td>
<td>-2.0</td>
</tr>
<tr>
<td>lesser evil</td>
<td>RBR JJ</td>
<td>-2.3</td>
</tr>
<tr>
<td>other problems</td>
<td>JJ NNS</td>
<td>-2.8</td>
</tr>
<tr>
<td>low funds</td>
<td>JJ NNS</td>
<td>-6.8</td>
</tr>
<tr>
<td>unethical practices</td>
<td>JJ NNS</td>
<td>-8.5</td>
</tr>
<tr>
<td>Average</td>
<td></td>
<td>-1.2</td>
</tr>
</tbody>
</table>
Results of Turney algorithm

- 410 reviews from Epinions
 - 170 (41%) negative
 - 240 (59%) positive
- Majority class baseline: 59%
- Turney algorithm: 74%

- Phrases rather than words
- Learns domain-specific information
Using WordNet to learn polarity

• WordNet: online thesaurus (covered in later lecture).
• Create positive ("good") and negative seed-words ("terrible")
• Find Synonyms and Antonyms
 • Positive Set: Add synonyms of positive words ("well") and antonyms of negative words
 • Negative Set: Add synonyms of negative words ("awful") and antonyms of positive words ("evil")
• Repeat, following chains of synonyms
• Filter
Summary on Learning Lexicons

• Advantages:
 • Can be domain-specific
 • Can be more robust (more words)

• Intuition
 • Start with a seed set of words (‘good’, ‘poor’)
 • Find other words that have similar polarity:
 • Using “and” and “but”
 • Using words that occur nearby in the same document
 • Using WordNet synonyms and antonyms
Sentiment Analysis

Learning Sentiment Lexicons
Sentiment Analysis

Other Sentiment Tasks
Finding sentiment of a sentence

• Important for finding aspects or attributes
 • Target of sentiment

• The food was great but the service was awful
Finding aspect/attribute/target of sentiment

• Frequent phrases + rules
 • Find all highly frequent phrases across reviews ("fish tacos")
 • Filter by rules like “occurs right after sentiment word”
 • “…great fish tacos” means fish tacos a likely aspect

<table>
<thead>
<tr>
<th>Casino</th>
<th>casino, buffet, pool, resort, beds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Children’s Barber</td>
<td>haircut, job, experience, kids</td>
</tr>
<tr>
<td>Greek Restaurant</td>
<td>food, wine, service, appetizer, lamb</td>
</tr>
<tr>
<td>Department Store</td>
<td>selection, department, sales, shop, clothing</td>
</tr>
</tbody>
</table>
Finding aspect/attribute/target of sentiment

- The aspect name may not be in the sentence
- For restaurants/hotels, aspects are well-understood
- Supervised classification
 - Hand-label a small corpus of restaurant review sentences with aspect
 - food, décor, service, value, NONE
 - Train a classifier to assign an aspect to a sentence
 - “Given this sentence, is the aspect food, décor, service, value, or NONE”
Putting it all together: Finding sentiment for aspects

Results of Blair-Goldensohn et al. method

Rooms (3/5 stars, 41 comments)

(+) The room was clean and everything worked fine – even the water pressure ...

(+) We went because of the free room and was pleasantly pleased ...

(-) ...the worst hotel I had ever stayed at ...

Service (3/5 stars, 31 comments)

(+) Upon checking out another couple was checking early due to a problem ...

(+) Every single hotel staff member treated us great and answered every ...

(-) The food is cold and the service gives new meaning to SLOW.

Dining (3/5 stars, 18 comments)

(+) our favorite place to stay in biloxi.the food is great also the service ...

(+) Offer of free buffet for joining the Play
Baseline methods assume classes have equal frequencies!

- If not balanced (common in the real world)
 - can’t use accuracies as an evaluation
 - need to use F-scores
- Severe imbalancing also can degrade classifier performance
- Two common solutions:
 1. Resampling in training
 - Random undersampling
 2. Cost-sensitive learning
 - Penalize SVM more for misclassification of the rare thing
How to deal with 7 stars?

1. Map to binary
2. Use linear or ordinal regression
 • Or specialized models like metric labeling

Bo Pang and Lillian Lee. 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. ACL, 115–124
Summary on Sentiment

• Generally modeled as classification or regression task
 • predict a binary or ordinal label

• Features:
 • Negation is important
 • Using all words (in naïve bayes) works well for some tasks
 • Finding subsets of words may help in other tasks
 • Hand-built polarity lexicons
 • Use seeds and semi-supervised learning to induce lexicons
Scherer Typology of Affective States

- **Emotion**: brief organically synchronized ... evaluation of a major event
 - *angry, sad, joyful, fearful, ashamed, proud, elated*
- **Mood**: diffuse non-caused low-intensity long-duration change in subjective feeling
 - *cheerful, gloomy, irritable, listless, depressed, buoyant*
- **Interpersonal stances**: affective stance toward another person in a specific interaction
 - *friendly, flirtatious, distant, cold, warm, supportive, contemptuous*
- **Attitudes**: enduring, affectively colored beliefs, dispositions towards objects or persons
 - *liking, loving, hating, valuing, desiring*
- **Personality traits**: stable personality dispositions and typical behavior tendencies
 - *nervous, anxious, reckless, morose, hostile, jealous*
Computational work on other affective states

- **Emotion:**
 - Detecting annoyed callers to dialogue system
 - Detecting confused/frustrated versus confident students

- **Mood:**
 - Finding traumatized or depressed writers

- **Interpersonal stances:**
 - Detection of flirtation or friendliness in conversations

- **Personality traits:**
 - Detection of extroverts
Detection of Friendliness

Ranganath, Jurafsky, McFarland

- Friendly speakers use collaborative conversational style
 - Laughter
 - Less use of negative emotional words
 - More sympathy
 - That’s too bad I’m sorry to hear that
 - More agreement
 - I think so too
 - Less hedges
 - kind of sort of a little ...
Sentiment Analysis

Other Sentiment Tasks