Introduction to

Information Retrieval

Introducing ranked retrieval
Ranked retrieval

- Thus far, our queries have all been Boolean.
 - Documents either match or don’t.

- Good for expert users with precise understanding of their needs and the collection.
 - Also good for applications: Applications can easily consume 1000s of results.

- Not good for the majority of users.
 - Most users incapable of writing Boolean queries (or they are, but they think it’s too much work).
 - Most users don’t want to wade through 1000s of results.
 - This is particularly true of web search.
Problem with Boolean search: feast or famine

- Boolean queries often result in either too few (≈0) or too many (1000s) results.
 - Query 1: “standard user dlink 650” \(\rightarrow\) 200,000 hits
 - Query 2: “standard user dlink 650 no card found” \(\rightarrow\) 0 hits
- It takes a lot of skill to come up with a query that produces a manageable number of hits.
 - AND gives too few; OR gives too many
Ranked retrieval models

- Rather than a set of documents satisfying a query expression, in *ranked retrieval models*, the system returns an ordering over the (top) documents in the collection with respect to a query.

- **Free text queries**: Rather than a query language of operators and expressions, the user’s query is just one or more words in a human language.

- In principle, there are two separate choices here, but in practice, ranked retrieval models have normally been associated with free text queries and vice versa.
Feast or famine: not a problem in ranked retrieval

- When a system produces a ranked result set, large result sets are not an issue
 - Indeed, the size of the result set is not an issue
 - We just show the top $k (\approx 10)$ results
 - We don’t overwhelm the user

- Premise: the ranking algorithm works
Scoring as the basis of ranked retrieval

- We wish to return in order the documents most likely to be useful to the searcher.
- How can we rank-order the documents in the collection with respect to a query?
- Assign a score – say in [0, 1] – to each document.
- This score measures how well document and query “match”.

Introduction to Information Retrieval

Ch. 6
Query-document matching scores

- We need a way of assigning a score to a query/document pair
- Let’s start with a one-term query
- If the query term does not occur in the document: score should be 0
- The more frequent the query term in the document, the higher the score (should be)
- We will look at a number of alternatives for this
Introduction to Information Retrieval

Introducing ranked retrieval
Introduction to Information Retrieval

Scoring with the Jaccard coefficient
Take 1: Jaccard coefficient

- A commonly used measure of overlap of two sets A and B is the Jaccard coefficient.

 $jaccard(A,B) = \frac{|A \cap B|}{|A \cup B|}$

 $jaccard(A,A) = 1$

 $jaccard(A,B) = 0$ if $A \cap B = 0$

 A and B don’t have to be the same size.

 Always assigns a number between 0 and 1.
Jaccard coefficient: Scoring example

- What is the query-document match score that the Jaccard coefficient computes for each of the two documents below?
 - **Query**: *ides of march*
 - **Document 1**: *caesar died in march*
 - **Document 2**: *the long march*
Issues with Jaccard for scoring

- It doesn’t consider *term frequency* (how many times a term occurs in a document)
 - Rare terms in a collection are more informative than frequent terms
 - Jaccard doesn’t consider this information
- We need a more sophisticated way of normalizing for length
 - Later in this lecture, we’ll use $|A \cap B| / \sqrt{|A \cup B|}$... instead of $|A \cap B| / |A \cup B|$ (Jaccard) for length normalization.
Introduction to Information Retrieval

Scoring with the Jaccard coefficient
Introduction to Information Retrieval

Term frequency weighting
Recall: Binary term-document incidence matrix

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Brutus</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>worser</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Each document is represented by a binary vector $\in \{0,1\}^{|V|}$
Term-document count matrices

Consider the number of occurrences of a term in a document:

- Each document is a count vector in $\mathbb{N}^{|V|}$: a column below

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>157</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brutus</td>
<td>4</td>
<td>157</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>232</td>
<td>227</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>worser</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Term-document count matrices

- Consider the number of occurrences of a term in a document:
 - Each document is a **count vector** in $\mathbb{N}^{|V|}$: a column below

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>157</td>
<td>73</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brutus</td>
<td>4</td>
<td>157</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>232</td>
<td>227</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>57</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>worser</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Bag of words model

- Vector representation doesn’t consider the ordering of words in a document
 - *John is quicker than Mary* and *Mary is quicker than John* have the same vectors

- This is called the **bag of words** model.
- In a sense, this is a step back: The positional index was able to distinguish these two documents
 - We will look at “recovering” positional information later on
 - For now: bag of words model
Term frequency tf

- The term frequency $tf_{t,d}$ of term t in document d is defined as the number of times that t occurs in d.
- We want to use tf when computing query-document match scores. But how?
- Raw term frequency is not what we want:
 - A document with 10 occurrences of the term is more relevant than a document with 1 occurrence of the term.
 - But not 10 times more relevant.
- Relevance does not increase proportionally with term frequency.

NB: frequency = count in IR
Log-frequency weighting

- The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases}
1 + \log_{10} \text{tf}_{t,d}, & \text{if } \text{tf}_{t,d} > 0 \\
0, & \text{otherwise}
\end{cases}$$

- Score for a document-query pair: sum over terms t in both q and d:

$$\text{score} = \sum_{t \in q \cap d} (1 + \log \text{tf}_{t,d})$$

- The score is 0 if none of the query terms is present in the document.
Log-frequency weighting

- The log frequency weight of term t in d is

$$w_{t,d} = \begin{cases}
1 + \log_{10} tf_{t,d}, & \text{if } tf_{t,d} > 0 \\
0, & \text{otherwise}
\end{cases}$$

- $0 \rightarrow 0$, $1 \rightarrow 1$, $2 \rightarrow 1.3$, $10 \rightarrow 2$, $1000 \rightarrow 4$, etc.

- Score for a document-query pair: sum over terms t in both q and d:

$$\text{score} = \sum_{t \in q \cap d} (1 + \log tf_{t,d})$$

- The score is 0 if none of the query terms is present in the document.
Introduction to Information Retrieval

Term frequency weighting
Introduction to

Information Retrieval

(Inverse) Document frequency weighting
Document frequency

- Rare terms are more informative than frequent terms
 - Recall stop words
- Consider a term in the query that is rare in the collection (e.g., arachnocentric)
- A document containing this term is very likely to be relevant to the query arachnocentric
- → We want a high weight for rare terms like arachnocentric.
Document frequency, continued

- Frequent terms are less informative than rare terms.
- Consider a query term that is frequent in the collection (e.g., *high*, *increase*, *line*).
- A document containing such a term is more likely to be relevant than a document that doesn’t.
- But it’s not a sure indicator of relevance.
- → For frequent terms, we want positive weights for words like *high, increase, and line*.
- But lower weights than for rare terms.
- We will use document frequency (df) to capture this.
idf weight

- df_t is the **document** frequency of t: the number of documents that contain t
 - df_t is an inverse measure of the informativeness of t
 - $df_t \leq N$

- We define the idf (inverse document frequency) of t by
 $$idf_t = \log_{10} \left(\frac{N}{df_t} \right)$$

- We use $\log (N/df_t)$ instead of N/df_t to “dampen” the effect of idf.

Will turn out the base of the log is immaterial.
idf example, suppose $N = 1$ million

<table>
<thead>
<tr>
<th>term</th>
<th>df_t</th>
<th>idf_t</th>
</tr>
</thead>
<tbody>
<tr>
<td>calpurnia</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>animal</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>sunday</td>
<td>1,000</td>
<td></td>
</tr>
<tr>
<td>fly</td>
<td>10,000</td>
<td></td>
</tr>
<tr>
<td>under</td>
<td>100,000</td>
<td></td>
</tr>
<tr>
<td>the</td>
<td>1,000,000</td>
<td></td>
</tr>
</tbody>
</table>

$$idf_t = \log_{10} \left(\frac{N}{df_t} \right)$$

There is one idf value for each term t in a collection.
Effect of idf on ranking

- Question: Does idf have an effect on ranking for one-term queries, like
 - iPhone
Effect of idf on ranking

- Question: Does idf have an effect on ranking for one-term queries, like
 - iPhone

- idf has no effect on ranking one term queries
 - idf affects the ranking of documents for queries with at least two terms

- For the query *capricious person*, idf weighting makes occurrences of *capricious* count for much more in the final document ranking than occurrences of *person*.
Collection vs. Document frequency

- The collection frequency of t is the number of occurrences of t in the collection, counting multiple occurrences.

- Example:

<table>
<thead>
<tr>
<th>Word</th>
<th>Collection frequency</th>
<th>Document frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>insurance</td>
<td>10440</td>
<td>3997</td>
</tr>
<tr>
<td>try</td>
<td>10422</td>
<td>8760</td>
</tr>
</tbody>
</table>

- Which word is a better search term (and should get a higher weight)?
Introduction to

Information Retrieval

(Inverse) Document frequency weighting
Introduction to Information Retrieval

tf-idf weighting
tf-idf weighting

- The tf-idf weight of a term is the product of its tf weight and its idf weight.

\[w_{t,d} = (1 + \log \text{tf}_{t,d}) \times \log_{10}(N / \text{df}_t) \]

- Best known weighting scheme in information retrieval
 - Note: the “-” in tf-idf is a hyphen, not a minus sign!
 - Alternative names: tf.idf, tf x idf

- Increases with the number of occurrences within a document
- Increases with the rarity of the term in the collection
Final ranking of documents for a query

\[\text{Score}(q,d) = \sum_{t \in q \cap d} \text{tf.idf}_{t,d} \]
Binary → count → weight matrix

<table>
<thead>
<tr>
<th></th>
<th>Antony and Cleopatra</th>
<th>Julius Caesar</th>
<th>The Tempest</th>
<th>Hamlet</th>
<th>Othello</th>
<th>Macbeth</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antony</td>
<td>5.25</td>
<td>3.18</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.35</td>
</tr>
<tr>
<td>Brutus</td>
<td>1.21</td>
<td>6.1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caesar</td>
<td>8.59</td>
<td>2.54</td>
<td>0</td>
<td>1.51</td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>Calpurnia</td>
<td>0</td>
<td>1.54</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cleopatra</td>
<td>2.85</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>mercy</td>
<td>1.51</td>
<td>0</td>
<td>1.9</td>
<td>0.12</td>
<td>5.25</td>
<td>0.88</td>
</tr>
<tr>
<td>worser</td>
<td>1.37</td>
<td>0</td>
<td>0.11</td>
<td>4.15</td>
<td>0.25</td>
<td>1.95</td>
</tr>
</tbody>
</table>

Each document is now represented by a real-valued vector of tf-idf weights $\in \mathbb{R}^{|V|}$.
Introduction to Information Retrieval

tf-idf weighting
Introduction to Information Retrieval

The Vector Space Model (VSM)
Documents as vectors

- Now we have a $|V|$-dimensional vector space
- Terms are axes of the space
- Documents are points or vectors in this space
- Very high-dimensional: tens of millions of dimensions when you apply this to a web search engine
- These are very sparse vectors – most entries are zero
Queries as vectors

- **Key idea 1:** Do the same for queries: represent them as vectors in the space
- **Key idea 2:** Rank documents according to their proximity to the query in this space
- Proximity = similarity of vectors
- Proximity ≈ inverse of distance
- Recall: We do this because we want to get away from the you’re-either-in-or-out Boolean model
- Instead: rank more relevant documents higher than less relevant documents
Formalizing vector space proximity

- First cut: distance between two points
 - (= distance between the end points of the two vectors)
- Euclidean distance?
- Euclidean distance is a bad idea . . .
- . . . because Euclidean distance is large for vectors of different lengths.
Why distance is a bad idea

The Euclidean distance \overrightarrow{q} between q and $\overrightarrow{d_2}$ is large even though the distribution of terms in the query \overrightarrow{q} and the distribution of terms in the document $\overrightarrow{d_2}$ are very similar.
Use angle instead of distance

- Thought experiment: take a document d and append it to itself. Call this document d'.
- “Semantically” d and d' have the same content
- The Euclidean distance between the two documents can be quite large
- The angle between the two documents is 0, corresponding to maximal similarity.

- Key idea: Rank documents according to angle with query.
From angles to cosines

The following two notions are equivalent.

- Rank documents in decreasing order of the angle between query and document
- Rank documents in increasing order of cosine(query,document)

Cosine is a monotonically decreasing function for the interval $[0^\circ, 180^\circ]$
From angles to cosines

- But how – and why – should we be computing cosines?
Length normalization

- A vector can be (length-) normalized by dividing each of its components by its length – for this we use the L_2 norm:
 $$\|\vec{x}\|_2 = \sqrt{\sum_i x_i^2}$$

- Dividing a vector by its L_2 norm makes it a unit (length) vector (on surface of unit hypersphere)

- Effect on the two documents d and d' (d appended to itself) from earlier slide: they have identical vectors after length-normalization.
 - Long and short documents now have comparable weights
cosine(query, document)

\[
\cos(\vec{q}, \vec{d}) = \frac{\vec{q} \cdot \vec{d}}{|\vec{q}| |\vec{d}|} = \frac{\vec{q} \cdot \vec{d}}{\sqrt{\sum_{i=1}^{V} q_i^2} \sqrt{\sum_{i=1}^{V} d_i^2}} = \sum_{i=1}^{V} q_i d_i
\]

q_i is the tf-idf weight of term i in the query

d_i is the tf-idf weight of term i in the document

$\cos(\vec{q}, \vec{d})$ is the cosine similarity of \vec{q} and \vec{d} ... or, equivalently, the cosine of the angle between \vec{q} and \vec{d}.
Cosine for length-normalized vectors

- For length-normalized vectors, cosine similarity is simply the dot product (or scalar product):

\[
\cos(\vec{q}, \vec{d}) = \vec{q} \cdot \vec{d} = \sum_{i=1}^{V} q_i d_i
\]

for \(q, d \) length-normalized.
Cosine similarity illustrated
Cosine similarity amongst 3 documents

How similar are the novels

SaS: *Sense and Sensibility*

PaP: *Pride and Prejudice,* and

WH: *Wuthering Heights?*

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>115</td>
<td>58</td>
<td>20</td>
</tr>
<tr>
<td>jealous</td>
<td>10</td>
<td>7</td>
<td>11</td>
</tr>
<tr>
<td>gossip</td>
<td>2</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>38</td>
</tr>
</tbody>
</table>

Term frequencies (counts)

Note: To simplify this example, we don’t do idf weighting.
Log frequency weighting

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>3.06</td>
<td>2.76</td>
<td>2.30</td>
</tr>
<tr>
<td>jealous</td>
<td>2.00</td>
<td>1.85</td>
<td>2.04</td>
</tr>
<tr>
<td>gossip</td>
<td>1.30</td>
<td>0</td>
<td>1.78</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>2.58</td>
</tr>
</tbody>
</table>

After length normalization

<table>
<thead>
<tr>
<th>term</th>
<th>SaS</th>
<th>PaP</th>
<th>WH</th>
</tr>
</thead>
<tbody>
<tr>
<td>affection</td>
<td>0.789</td>
<td>0.832</td>
<td>0.524</td>
</tr>
<tr>
<td>jealous</td>
<td>0.515</td>
<td>0.555</td>
<td>0.465</td>
</tr>
<tr>
<td>gossip</td>
<td>0.335</td>
<td>0</td>
<td>0.405</td>
</tr>
<tr>
<td>wuthering</td>
<td>0</td>
<td>0</td>
<td>0.588</td>
</tr>
</tbody>
</table>

\[
\cos(SaS, PaP) \approx 0.789 \times 0.832 + 0.515 \times 0.555 + 0.335 \times 0.0 + 0.0 \times 0.0 \approx 0.94 \\
\cos(SaS, WH) \approx 0.79 \\
\cos(PaP, WH) \approx 0.69
\]

Why do we have \(\cos(SaS, PaP) > \cos(SaS, WH)\)?
Introduction to Information Retrieval

The Vector Space Model (VSM)
Introduction to Information Retrieval

Calculating tf-idf cosine scores in an IR system
tf-idf weighting has many variants

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (natural)</td>
<td>tf(_{t,d})</td>
<td>n (no)</td>
</tr>
<tr>
<td>l (logarithm)</td>
<td>1 + log(tf(_{t,d}))</td>
<td>t (idf)</td>
</tr>
<tr>
<td>a (augmented)</td>
<td>0.5 + (\frac{0.5 \times tf_{t,d}}{\text{max}t(tf{t,d})})</td>
<td>p (prob idf)</td>
</tr>
<tr>
<td>b (boolean)</td>
<td>(\begin{cases} 1 & \text{if } tf_{t,d} > 0 \ 0 & \text{otherwise} \end{cases})</td>
<td>max{0,-log((\frac{N-\text{df}_t}{\text{df}_t}))}</td>
</tr>
<tr>
<td>L (log ave)</td>
<td>(\frac{1+\log(tf_{t,d})}{1+\log(\text{ave}t \in d(tf{t,d}))})</td>
<td>(\frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}})</td>
</tr>
</tbody>
</table>

Columns headed ‘n’ are acronyms for weight schemes.

Why is the base of the log in idf immaterial?
tf-idf weighting has many variants

<table>
<thead>
<tr>
<th>Term frequency</th>
<th>Document frequency</th>
<th>Normalization</th>
</tr>
</thead>
<tbody>
<tr>
<td>n (natural)</td>
<td>tf_{t,d}</td>
<td>n (no) 1</td>
</tr>
<tr>
<td>l (logarithm)</td>
<td>1 + log(tf_{t,d})</td>
<td>t (idf) log \frac{N}{df_t}</td>
</tr>
<tr>
<td>a (augmented)</td>
<td>0.5 + \frac{0.5 \times tf_{t,d}}{\max_t(tf_{t,d})}</td>
<td>p (prob idf) max{0, \log \frac{N - df_t}{df_t}}</td>
</tr>
<tr>
<td>b (boolean)</td>
<td>\begin{cases} 1 & \text{if } tf_{t,d} > 0 \ 0 & \text{otherwise} \end{cases}</td>
<td>c (cosine) \frac{1}{\sqrt{w_1^2 + w_2^2 + \ldots + w_M^2}}</td>
</tr>
<tr>
<td>L (log ave)</td>
<td>\frac{1 + \log(tf_{t,d})}{1 + \log(\text{ave}{t \in d}(tf{t,d}))}</td>
<td>u (pivoted unique) 1/u</td>
</tr>
<tr>
<td></td>
<td></td>
<td>b (byte size) 1/\text{CharLength}^\alpha, \alpha < 1</td>
</tr>
</tbody>
</table>
Weighting may differ in queries vs documents

- Many search engines allow for different weightings for queries vs. documents
- SMART Notation: denotes the combination in use in an engine, with the notation $ddd.qqq$, using the acronyms from the previous table
- A very standard weighting scheme is: Inc.ltc
- Document: logarithmic tf (l as first character), no idf and cosine normalization
- Query: logarithmic tf (l in leftmost column), idf (t in second column), cosine normalization ...

A bad idea?
tf-idf example: Inc.ltc

Document: *car insurance auto insurance*

Query: *best car insurance*

<table>
<thead>
<tr>
<th>Term</th>
<th>tf-raw</th>
<th>tf-wt</th>
<th>df</th>
<th>idf</th>
<th>wt</th>
<th>n’ lize</th>
<th>Prod</th>
</tr>
</thead>
<tbody>
<tr>
<td>auto</td>
<td>0</td>
<td>0</td>
<td>5000</td>
<td>2.3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>best</td>
<td>1</td>
<td>1</td>
<td>50000</td>
<td>1.3</td>
<td>1.3</td>
<td>0.34</td>
<td>0</td>
</tr>
<tr>
<td>car</td>
<td>1</td>
<td>1</td>
<td>10000</td>
<td>2.0</td>
<td>2.0</td>
<td>0.52</td>
<td>1</td>
</tr>
<tr>
<td>insurance</td>
<td>1</td>
<td>1</td>
<td>1000</td>
<td>3.0</td>
<td>3.0</td>
<td>0.78</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Term</th>
<th>tf-raw</th>
<th>tf-wt</th>
<th>df</th>
<th>idf</th>
<th>wt</th>
<th>n’ lize</th>
<th>Prod</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.3</td>
<td></td>
<td></td>
<td></td>
<td>1.3</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Exercise: what is \(N \), the number of docs?

Doc length

\[
\text{Doc length} = \sqrt{1^2 + 0^2 + 1^2 + 1.3^2} \approx 1.92
\]

Score

\[0 + 0 + 0.27 + 0.53 = 0.8\]
Computing cosine scores

\[
\text{CosineScore}(q)
\]

1. \(\text{float Scores}[N] = 0 \)
2. \(\text{float Length}[N] \)
3. \(\text{for each query term } t \)
4. \(\text{do calculate } w_{t,q} \text{ and fetch postings list for } t \)
5. \(\text{for each pair}(d, tf_{t,d}) \text{ in postings list} \)
6. \(\text{do } \text{Scores}[d] += w_{t,d} \times w_{t,q} \)
7. \(\text{Read the array Length} \)
8. \(\text{for each } d \)
9. \(\text{do } \text{Scores}[d] = \text{Scores}[d]/\text{Length}[d] \)
10. \(\text{return Top } K \text{ components of } \text{Scores}[] \)
Summary – vector space ranking

- Represent the query as a weighted tf-idf vector
- Represent each document as a weighted tf-idf vector
- Compute the cosine similarity score for the query vector and each document vector
- Rank documents with respect to the query by score
- Return the top K (e.g., $K = 10$) to the user
Introduction to

Information Retrieval

Calculating tf-idf cosine scores in an IR system
Introduction to Information Retrieval

Evaluating search engines
Measures for a search engine

- How fast does it index
 - Number of documents/hour
 - (Average document size)
- How fast does it search
 - Latency as a function of index size
- Expressiveness of query language
 - Ability to express complex information needs
 - Speed on complex queries
- Uncluttered UI
- Is it free?
Measures for a search engine

- All of the preceding criteria are *measurable*: we can quantify speed/size
 - we can make expressiveness precise
- The key measure: user happiness
 - What is this?
 - Speed of response/size of index are factors
 - But blindingly fast, useless answers won’t make a user happy
- Need a way of quantifying user happiness with the results returned
 - Relevance of results to user’s information need
Evaluating an IR system

- An **information need** is translated into a **query**
- Relevance is assessed relative to the **information need** *not* the **query**
- E.g., **Information need**: *I’m looking for information on whether drinking red wine is more effective at reducing your risk of heart attacks than white wine.*
- **Query**: *wine red white heart attack effective*
- You evaluate whether the doc addresses the information need, not whether it has these words
Evaluating ranked results

- Evaluation of a result set:
 - If we have
 - a benchmark document collection
 - a benchmark set of queries
 - assessor judgments of whether documents are relevant to queries
 Then we can use Precision/Recall/F measure as before

- Evaluation of ranked results:
 - The system can return any number of results
 - By taking various numbers of the top returned documents (levels of recall), the evaluator can produce a precision-recall curve
Recall/Precision

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>R</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>N</td>
<td></td>
</tr>
</tbody>
</table>

Assume 10 rel docs in collection
Two current evaluation measures...

- Mean average precision (MAP)
 - AP: Average of the precision value obtained for the top \(k \) documents, each time a relevant doc is retrieved
 - Avoids interpolation, use of fixed recall levels
 - Does weight most accuracy of top returned results
 - MAP for set of queries is arithmetic average of APs
 - Macro-averaging: each query counts equally
Introduction to Information Retrieval

Evaluating search engines