Maxent Models and Discriminative Estimation

Generative vs. Discriminative models

Christopher Manning
Introduction

• So far we’ve looked at “generative models”
 • Language models, Naive Bayes

• But there is now much use of conditional or discriminative probabilistic models in NLP, Speech, IR (and ML generally)

• Because:
 • They give high accuracy performance
 • They make it easy to incorporate lots of linguistically important features
 • They allow automatic building of language independent, retargetable NLP modules
Joint vs. Conditional Models

- We have some data \{(d, c)\} of paired observations \(d\) and hidden classes \(c\).
- **Joint (generative) models** place probabilities over both observed data and the hidden stuff (generate the observed data from hidden stuff):
 - All the classic StatNLP models:
 - \(n\)-gram models, Naive Bayes classifiers, hidden Markov models, probabilistic context-free grammars, IBM machine translation alignment models
Joint vs. Conditional Models

- **Discriminative (conditional) models** take the data as given, and put a probability over hidden structure given the data:
 - Logistic regression, conditional loglinear or maximum entropy models, conditional random fields
 - Also, SVMs, (averaged) perceptron, etc. are discriminative classifiers (but not directly probabilistic)
Bayes Net/Graphical Models

- Bayes net diagrams draw circles for random variables, and lines for direct dependencies
- Some variables are observed; some are hidden
- Each node is a little classifier (conditional probability table) based on incoming arcs

Naive Bayes

Logistic Regression

Generative

Discriminative
Conditional vs. Joint Likelihood

- A **joint** model gives probabilities $P(d,c)$ and tries to maximize this joint likelihood.
 - It turns out to be trivial to choose weights: just relative frequencies.
- A **conditional** model gives probabilities $P(c|d)$. It takes the data as given and models only the conditional probability of the class.
 - We seek to maximize conditional likelihood.
 - Harder to do (as we’ll see...)
 - More closely related to classification error.
Conditional models work well: Word Sense Disambiguation

- Even with exactly the same features, changing from joint to conditional estimation increases performance

| Training Set | | | |
|-------------|---|---|
| Objective | Accuracy |
| Joint Like. | 86.8 |
| Cond. Like. | 98.5 |

| Test Set | | | |
|----------|---|---|
| Objective | Accuracy |
| Joint Like. | 73.6 |
| Cond. Like. | 76.1 |

(Klein and Manning 2002, using Senseval-1 Data)
Maxent Models and Discriminative Estimation

Generative vs. Discriminative models

Christopher Manning
Discriminative Model Features

Making features from text for discriminative NLP models

Christopher Manning
Features

- In these slides and most maxent work: features f are elementary pieces of evidence that link aspects of what we observe d with a category c that we want to predict.
- A feature is a function with a bounded real value: $f: C \times D \rightarrow \mathbb{R}$.
Features

- In these slides and most maxent work: *features* f are elementary pieces of evidence that link aspects of what we observe d with a category c that we want to predict.
- A feature is a function with a bounded real value.
Example features

- $f_1(c, d) \equiv [c = \text{LOCATION} \land w_1 = \text{“in”} \land \text{isCapitalized}(w)]$
- $f_2(c, d) \equiv [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(w)]$
- $f_3(c, d) \equiv [c = \text{DRUG} \land \text{ends}(w, \text{“c”})]$

- Models will assign to each feature a weight:
 - A positive weight votes that this configuration is likely correct
 - A negative weight votes that this configuration is likely incorrect
Example features

- \(f_1(c, d) \equiv [c = \text{LOCATION} \land w_{-1} = \text{“in”} \land \text{isCapitalized}(w)] \)
- \(f_2(c, d) \equiv [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(w)] \)
- \(f_3(c, d) \equiv [c = \text{DRUG} \land \text{ends}(w, \text{“c”})] \)

Models will assign to each feature a **weight:**

- A positive weight votes that this configuration is likely correct
- A negative weight votes that this configuration is likely incorrect
Feature Expectations

- We will crucially make use of two *expectations*
 - actual or predicted counts of a feature firing:

 - Empirical count (expectation) of a feature:
 \[
 \text{empirical } E(f_i) = \sum_{(c,d) \in \text{observed}(C,D)} f_i(c,d)
 \]

 - Model expectation of a feature:
 \[
 E(f_i) = \sum_{(c,d) \in (C,D)} P(c,d) f_i(c,d)
 \]
Features

• In NLP uses, usually a feature specifies (1) an indicator function – a yes/no boolean matching function – of properties of the input and (2) a particular class

\[f_i(c, d) \equiv [\Phi(d) \land c = c_j] \quad [\text{Value is 0 or 1}] \]

• They pick out a data subset and suggest a label for it.

• We will say that \(\Phi(d) \) is a feature of the data \(d \), when, for each \(c_j \), the conjunction \(\Phi(d) \land c = c_j \) is a feature of the data-class pair \((c, d) \)
Features

- In NLP uses, usually a feature specifies
 1. an indicator function – a yes/no boolean matching function – of properties of the input and
 2. a particular class

\[f_i(c, d) = [\Phi(d) \land c = c_j] \quad \text{[Value is 0 or 1]} \]

- Each feature picks out a data subset and suggests a label for it
Feature-Based Models

- The decision about a data point is based only on the **features** active at that point.

<table>
<thead>
<tr>
<th>Data</th>
<th>Label</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUSINESS: Stocks hit a yearly low ...</td>
<td>BUSINESS</td>
<td>{..., stocks, hit, a, yearly, low, ...}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
<th>Label</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>... to restructure bank: MONEY debt.</td>
<td>MONEY</td>
<td>{..., (w_{-1} = \text{restructure}, \ w_{+1} = \text{debt}, \ L=12), ...}</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Data</th>
<th>Label</th>
<th>Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>DT JJ NN ... The previous fall ...</td>
<td>NN</td>
<td>{(w = \text{fall}, \ t_{-1} = \text{JJ}), (w_{-1} = \text{previous} }}</td>
</tr>
</tbody>
</table>

- **Text Categorization**
- **Word-Sense Disambiguation**
- **POS Tagging**
Example: Text Categorization

(Zhang and Oles 2001)

• Features are presence of each word in a document and the document class (they do feature selection to use reliable indicator words)
• Tests on classic Reuters data set (and others)
 • Naïve Bayes: 77.0% F_1
 • Linear regression: 86.0%
 • Logistic regression: 86.4%
 • Support vector machine: 86.5%
• Paper emphasizes the importance of regularization (smoothing) for successful use of discriminative methods (not used in much early NLP/IR work)
Other Maxent Classifier Examples

- You can use a maxent classifier whenever you want to assign data points to one of a number of classes:
 - Sentence boundary detection *(Mikheev 2000)*
 - Is a period end of sentence or abbreviation?
 - Sentiment analysis *(Pang and Lee 2002)*
 - Word unigrams, bigrams, POS counts, ...
 - PP attachment *(Ratnaparkhi 1998)*
 - Attach to verb or noun? Features of head noun, preposition, etc.
 - Parsing decisions in general *(Ratnaparkhi 1997; Johnson et al. 1999, etc.)*
Discriminative Model Features

Making features from text for discriminative NLP models

Christopher Manning
Feature-based Linear Classifiers

How to put features into a classifier
Feature-Based Linear Classifiers

• Linear classifiers at classification time:
 • Linear function from feature sets \(\{f_i\} \) to classes \(\{c\} \).
 • Assign a weight \(\lambda_i \) to each feature \(f_i \).
 • We consider each class for an observed datum \(d \).
 • For a pair \((c,d) \), features vote with their weights:
 • \(\text{vote}(c) = \sum \lambda_i f_i(c,d) \)

- Choose the class \(c \) which maximizes \(\sum \lambda_i f_i(c,d) \)
Feature-Based Linear Classifiers

- Linear classifiers at classification time:
 - Linear function from feature sets \(\{f_i\} \) to classes \(\{c\} \).
 - Assign a weight \(\lambda_i \) to each feature \(f_i \).
 - We consider each class for an observed datum \(d \).
 - For a pair \((c,d) \), features vote with their weights:
 - \(\text{vote}(c) = \sum \lambda_i f_i(c,d) \)
 - Choose the class \(c \) which maximizes \(\sum \lambda_i f_i(c,d) = \text{LOCATION} \)
Feature-Based Linear Classifiers

There are many ways to chose weights for features

• Perceptron: find a currently misclassified example, and nudge weights in the direction of its correct classification

• Margin-based methods (Support Vector Machines)
Feature-Based Linear Classifiers

- Exponential (log-linear, maxent, logistic, Gibbs) models:
 - Make a probabilistic model from the linear combination $\sum \lambda_i f_i(c,d)$

 $$P(c \mid d, \lambda) = \frac{\exp \sum \lambda_i f_i(c,d)}{\sum_{c'} \exp \sum \lambda_i f_i(c',d)}$$

 - $P(LOCATION \mid \text{in Québec}) = e^{1.8} e^{-0.6} / (e^{1.8} e^{-0.6} + e^{0.3} + e^0) = 0.586$
 - $P(DRUG \mid \text{in Québec}) = e^{0.3} / (e^{1.8} e^{-0.6} + e^{0.3} + e^0) = 0.238$
 - $P(PERSON \mid \text{in Québec}) = e^0 / (e^{1.8} e^{-0.6} + e^{0.3} + e^0) = 0.176$

 - The **weights** are the **parameters** of the probability model, combined via a “soft max” function

 Makes votes positive
 Normalizes votes
Feature-Based Linear Classifiers

- Exponential (log-linear, maxent, logistic, Gibbs) models:
 - Given this model form, we will choose parameters \(\{\lambda_i\} \) that *maximize the conditional likelihood* of the data according to this model.
 - We construct not only classifications, but probability distributions over classifications.
 - There are other (good!) ways of discriminating classes — SVMs, boosting, even perceptrons — but these methods are not as trivial to interpret as distributions over classes.
Aside: logistic regression

• Maxent models in NLP are essentially the same as multiclass logistic regression models in statistics (or machine learning)
 • If you haven’t seen these before, don’t worry, this presentation is self-contained!
 • If you have seen these before you might think about:
 • The parameterization is slightly different in a way that is advantageous for NLP-style models with tons of sparse features (but statistically inelegant)
 • The key role of feature functions in NLP and in this presentation
 • The features are more general, with \(f \) also being a function of the class – when might this be useful?
Quiz Question

Assuming exactly the same set up (3 class decision: LOCATION, PERSON, or DRUG; 3 features as before, maxent), what are:

- \(P(\text{PERSON} \mid \text{by Goéric}) = \)
- \(P(\text{LOCATION} \mid \text{by Goéric}) = \)
- \(P(\text{DRUG} \mid \text{by Goéric}) = \)

- \(1.8 \ f_1(c, d) \equiv [c = \text{LOCATION} \land w_{-1} = \text{“in”} \land \text{isCapitalized}(w)]\)
- \(-0.6 \ f_2(c, d) \equiv [c = \text{LOCATION} \land \text{hasAccentedLatinChar}(w)]\)
- \(0.3 \ f_3(c, d) \equiv [c = \text{DRUG} \land \text{ends}(w, \text{“c”})]\)

\[
P(c \mid d, \lambda) = \frac{\exp \sum_i \lambda_i f_i(c, d)}{\sum_c \exp \sum_i \lambda_i f_i(c', d)}
\]
Feature-based Linear Classifiers

How to put features into a classifier
Building a Maxent Model

The nuts and bolts
Building a Maxent Model

- We define features (indicator functions) over data points
 - Features represent sets of data points which are distinctive enough to deserve model parameters.
 - Words, but also “word contains number”, “word ends with ing”, etc.

- We will simply encode each Φ feature as a unique String
 - A datum will give rise to a set of Strings: the active Φ features
 - Each feature $f_i(c, d) \equiv [\Phi(d) \wedge c = c_j]$ gets a real number weight

- We concentrate on Φ features but the math uses i indices of f_i
Building a Maxent Model

• Features are often added during model development to target errors
 • Often, the easiest thing to think of are features that mark bad combinations

• Then, for any given feature weights, we want to be able to calculate:
 • Data conditional likelihood
 • Derivative of the likelihood wrt each feature weight
 • Uses expectations of each feature according to the model

• We can then find the optimum feature weights (discussed later).
Building a Maxent Model

The nuts and bolts
Naive Bayes vs. Maxent models

Generative vs. Discriminative models: The problem of overcounting evidence

Christopher Manning
Text classification: Asia or Europe

NB FACTORS:
- \(P(A) = P(E) = \)
- \(P(M \mid A) = \)
- \(P(M \mid E) = \)

PREDICTIONS:
- \(P(A, M) = \)
- \(P(E, M) = \)
- \(P(A \mid M) = \)
- \(P(E \mid M) = \)
Text classification: Asia or Europe

Europe	Training Data	Asia
Monaco, Monaco | Monaco, Monaco, Monaco, Monaco | Monaco, Hong Kong, Hong Kong, Hong Kong

NB FACTORS:
- \(P(A) = P(E) = \)
- \(P(H | A) = P(K | A) = \)
- \(P(H | E) = P(K | E) = \)

NB Model

Class

\(X_1 = H \) \(X_2 = K \)

PREDICTIONS:
- \(P(A,H,K) = \)
- \(P(E,H,K) = \)
- \(P(A | H,K) = \)
- \(P(E | H,K) = \)
Text classification: Asia or Europe

Europe

Training Data

Asia

NB FACTORS:

- \(P(A) = P(E) = \)
- \(P(M|A) = \)
- \(P(M|E) = \)
- \(P(H|A) = P(K|A) = \)
- \(P(H|E) = PK|E) = \)

PREDICTIONS:

- \(P(A,H,K,M) = \)
- \(P(E,H,K,M) = \)
- \(P(A|H,K,M) = \)
- \(P(E|H,K,M) = \)
Naive Bayes vs. Maxent Models

• Naive Bayes models multi-count correlated evidence
 • Each feature is multiplied in, even when you have multiple features telling you the same thing

• Maximum Entropy models (pretty much) solve this problem
 • As we will see, this is done by weighting features so that model expectations match the observed (empirical) expectations
Naive Bayes vs. Maxent models

Generative vs. Discriminative models: The problem of overcounting evidence

Christopher Manning
Maxent Models and Discriminative Estimation

Maximizing the likelihood
Exponential Model Likelihood

- **Maximum (Conditional) Likelihood Models**: Given a model form, choose values of parameters to maximize the (conditional) likelihood of the data.

\[
\log P(C \mid D, \lambda) = \sum_{(c,d) \in (C,D)} \log P(c \mid d, \lambda) = \sum_{(c,d) \in (C,D)} \log \frac{\exp \sum_{i} \lambda_i f_i(c,d)}{\sum_{c'} \exp \sum_{i} \lambda_i f_i(c',d)}
\]
The Likelihood Value

• The (log) conditional likelihood of iid data \((C,D)\) according to maxent model is a function of the data and the parameters \(\lambda\):

\[
\log P(C | D, \lambda) = \log \prod_{(c,d) \in (C,D)} P(c | d, \lambda) = \sum_{(c,d) \in (C,D)} \log P(c | d, \lambda)
\]

• If there aren’t many values of \(c\), it’s easy to calculate:

\[
\log P(C | D, \lambda) = \sum_{(c,d) \in (C,D)} \log \frac{\exp \sum_i \lambda_i f_i(c,d)}{\sum_c \exp \sum_i \lambda_i f_i(c',d)}
\]
The Likelihood Value

• We can separate this into two components:

\[
\log P(C \mid D, \lambda) = \sum_{(c,d) \in (C,D)} \log \exp \sum_i \lambda_i f_i(c, d) - \sum_{(c,d) \in (C,D)} \log \exp \sum_{c'} \exp \sum_i \lambda_i f_i(c', d)
\]

\[
\log P(C \mid D, \lambda) = N(\lambda) - M(\lambda)
\]

• The derivative is the difference between the derivatives of each component
The Derivative I: Numerator

\[
\frac{\partial N(\lambda)}{\partial \lambda_i} = \frac{\partial}{\partial \lambda_i} \sum_{(c,d) \in (C,D)} \log \exp \sum_i \lambda_i f_i(c,d)
\]

= \sum_{(c,d) \in (C,D)} \frac{\partial}{\partial \lambda_i} \sum_i \lambda_i f_i(c,d)

= \sum_{(c,d) \in (C,D)} f_i(c,d)

Derivative of the numerator is: the empirical count\(f_i, c)\)
The Derivative II: Denominator

\[
\frac{\partial M(\lambda)}{\partial \lambda_i} = \frac{\partial}{\partial \lambda_i} \sum_{(c,d) \in (C,D)} \log \sum_{c'} \exp \sum_{i} \lambda_i f_i(c', d)
\]

\[
= \sum_{(c,d) \in (C,D)} \frac{1}{\exp \sum_{i} \lambda_i f_i(c', d)} \frac{\partial \sum_{c'} \exp \sum_{i} \lambda_i f_i(c', d)}{\partial \lambda_i}
\]

\[
= \sum_{(c,d) \in (C,D)} \frac{1}{\exp \sum_{i} \lambda_i f_i(c', d)} \sum_{c'} \exp \sum_{i} \lambda_i f_i(c', d) \frac{\partial \sum_{i} \lambda_i f_i(c', d)}{\partial \lambda_i}
\]

\[
= \sum_{(c,d) \in (C,D)} \sum_{c'} \frac{\exp \sum_{i} \lambda_i f_i(c', d)}{\sum_{c''} \exp \sum_{i} \lambda_i f_i(c'', d)} \frac{\partial \sum_{i} \lambda_i f_i(c', d)}{\partial \lambda_i}
\]

\[
= \sum_{(c,d) \in (C,D)} \sum_{c'} P(c' | d, \lambda) f_i(c', d) = \text{predicted count}(f_{\gamma}, \lambda)
\]
The Derivative III

\[
\frac{\partial \log P(C \mid D, \lambda)}{\partial \lambda_i} = \text{actual count}(f_i, C) - \text{predicted count}(f_i, \lambda)
\]

- The optimum parameters are the ones for which each feature’s predicted expectation equals its empirical expectation. The optimum distribution is:
 - Always unique (but parameters may not be unique)
 - Always exists (if feature counts are from actual data).
- These models are also called maximum entropy models because we find the model having maximum entropy and satisfying the constraints:
 \[E_p (f_j) = E_{\tilde{p}} (f_j), \forall j \]
Finding the optimal parameters

• We want to choose parameters $\lambda_1, \lambda_2, \lambda_3, \ldots$ that maximize the conditional log-likelihood of the training data

$$CLogLik(D) = \sum_{i=1}^{n} \log P(c_i | d_i)$$

• To be able to do that, we’ve worked out how to calculate the function value and its partial derivatives (its gradient)
A likelihood surface
Finding the optimal parameters

• Use your favorite numerical optimization package....
 • Commonly (and in our code), you **minimize** the negative of C_{LogLik}
 1. Gradient descent (GD); Stochastic gradient descent (SGD)
 2. Iterative proportional fitting methods: Generalized Iterative Scaling (GIS) and Improved Iterative Scaling (IIS)
 3. Conjugate gradient (CG), perhaps with preconditioning
 4. Quasi-Newton methods – limited memory variable metric (LMVM) methods, in particular, L-BFGS
Maxent Models and Discriminative Estimation

Maximizing the likelihood